MEMS devices and applications

Dr Julien Arcamone
Business development, Silicon Components division
julien.arcamone@cea.fr
Outline |

I. Introduction: LETI, a major player in MEMS R&D

II. Activities on MEMS actuators

III. Activities on RF MEMS

IV. Activities on MEMS sensors

V. Key accomplishments and vision for the future
MEMS activities at LETI: missions & scope

Missions
- Designing new MEMS components and/or developing fabrication processes of MEMS devices with Si-based technologies
- In strong partnership with international industrial companies
- Focusing on single process steps or full development cycle including device concept and prototyping

MEMS at LETI

R&D domains
- MEMS actuators
- MEMS (NEMS) sensors
- RF MEMS & passives
- + packaging and associated design kits

Market areas
- Very broad range
 - Consumer applications, mobile phones
 - Automotive & Space
 - Health
 - Defense
MEMS activities at LETI: main figures

- Some statistics: the largest R&D MEMS lab in Europe

 More than 150 persons including research engineers and technicians, PhD students and Post-docs

 ~30 patents and more than 150 publications every year

 5 common labs with industrial companies

- Covering the whole chain: from MEMS design to system integration

 - MEMS design (modeling and simulation) and prototyping
 - Fabrication and packaging
 - Electrical and functional characterization
 - Integration with analog and digital electronics

- Main industrial partners

Leti Day in Nagoya, October 4th 2012 – MEMS devices and applications (J.Arcamone)
Outline

I. Introduction: LETI, a major player in MEMS R&D

II. Activities on MEMS actuators

III. Activities on RF MEMS

IV. Activities on MEMS sensors

V. Key accomplishments and vision for the future
MEMS actuators

- **Research Focus**
 Materials and process development (PZT,...)
 Piezoelectric and Electrostatic actuators

- **Applications**
 Inkjet technology
 Imaging: adaptive focus lens
 Acoustic: MEMS loudspeakers
 Medical: energy harvesting, micro-pump
Development of PZT as MEMS material

Material development and 200mm integration
- Specific deposition techniques (Sol-Gel, epitaxial) for gradient-free layers
- In-depth characterization → extracted parameters: $e_{31,eff} \approx -16 \text{ C/m}^2$, $d_{31} \approx 155 \text{pm/V}$, $\varepsilon \approx 1500$

Implementation as piezoelectric actuator
- Applied voltage on PZT → in-plane stress → membrane deflection
- Application: inkjet and switch
Acoustic application
MEMS digital loudspeaker

Acoustic digital MEMS for portable electronic devices
- Sound Level Pressure at 1m: 50 dB/cm²
- Actuation voltage < 30 V
- Thickness < 1mm, size 1 x 1 cm²
Electrostatic or piezoelectric actuator for portable electronic devices

- Focal distance: $\infty \rightarrow 10\,\text{cm}$
- Actuation voltage $< 10\,\text{V}$
- Thickness $< 500\,\mu\text{m}$
- Start-up creation: Wavelens
Outline |

I. Introduction: LETI, a major player in MEMS R&D

II. Activities on MEMS actuators

III. Activities on RF MEMS

IV. Activities on MEMS sensors

V. Key accomplishments and vision for the future
RF MEMS

- **Research Focus**
 - Materials and process development (AlN,...)
 - High-Performance RF Passive Components
 - High-Q and Tunable Magnetic Inductors
 - Acoustic Resonators and Filters
 - RF MEMS Switches

- **Applications**
 - Impedance Matching Networks
 - Tunable Antennas
 - Filtering, Time Reference, RF Circuits

- **Market areas**
 - Space & Defense, Telecom, Low-Power Radio, Medical, Entertainment
RF MEMS switch

Electrostatic switch

- SPST dc-contact series switch
- Ultra-compact design → 800x800µm²
- High maturity 200mm process
- Highly reliable Ruthenium metal contact
- Dielectric free electrostatic actuation → no charging effects
- DC to 40 GHz operation band
- Insertion Loss < 0.6 dB, Isolation > 20dB
- Low actuation voltage (35 V)
Lamb waves filters

- Basis: strong know-how on BAW devices
- Use of laterally-propagating waves
- Frequency and other resonator properties **fixed by layout** (and not only by layer thicknesses)
- Frequencies ranging from 100 MHz to 2.5 GHz depending on the exploited acoustic mode
- Suitable for **narrow-band** filtering

RF filters

RF MEMS realizations 2/2

Resonant cavity

Waveguide

Air gap

Impedance (Ω)

![Graph showing impedance as a function of frequency.](image)

- $f_0 = 280$ MHz
- $k_{t2} = 1\%$
- $Q_{shunt} = 400$
Outline

I. Introduction: LETI, a major player in MEMS R&D

II. Activities on MEMS actuators

III. Activities on RF MEMS

IV. Activities on MEMS sensors

V. Key accomplishments and vision for the future
MEMS sensors

- **Research Focus**

 Process integration
 Inertial sensors (accelerometer, gyroscope, magnetometer)
 Pressure and force sensors
 NEMS-based chemical and biosensors
 Magnetic sensors

- **Applications**

 Motion capture (11 axis platform)
 Haptics
 Gas analysis and point-of-care

- **Market areas**

 Space & Defense, Automotive, Entertainment, Industrial Safety, Health monitoring
Multi-axis M&NEMS platform

M&NEMS: a multi-sensor, multi-axis generic platform
- Sensors fusion with one common electronics, protected by more than 20 patents
- Not sensitive to parasitic, **x3 area gain**, low-power

MEMS-size inertial mass + **Nano-size piezoresistive gauge**

3D accelerometer 3D gyroscope 3D magnetometer Microphone & Pressure sens.

To be published
NEMS-based sensors

NEMS-based resonant sensors address other domains than MEMS: eg, chemical and bio-sensing

- High-efficiency generic (patented) design of NEMS resonator based on electrostatic actuation and piezoresistive detection (high SNR, high frequency)
- Unique and robust NEMS technology

Multi-gas sensor coupling gas chromatography and NEMS detectors Start-up creation 2012 APIX tech.

NEMS-based mass spectrometry for biodetection (proteins, viruses and bacteria)
Magnetic sensors

Above-IC GMR current sensors

Magnetic Tunnel Junction (TMR, MRAM)

MEMS sensors realizations 3/3
Outline |

I. Introduction: LETI, a major player in MEMS R&D

II. Activities on MEMS actuators

III. Activities on RF MEMS

IV. Activities on MEMS sensors

V. Key accomplishments and vision for the future
Key accomplishments

Examples of technological transfers to industrial companies

- MEMS accelerometers and gyroscopes
- High-value capacitors

Recent start-ups

- APIX Multi-gas analyzers coupling gas chromatography and NEMS
- Wavelens MEMS-actuator–based varifocal lens (autofocus) for mobile phone camera
Future perspectives

- **MEMS actuators**
 MEMS using low-cost piezoelectric polymer as structural layer
 Energy harvesters

- **RF MEMS**
 Tunable, reconfigurable and low-power components
 Ultra-high frequency (60-100GHz) filters and switches
 Complex SoC (DC-DC converters, decoupling capacitors)

- **MEMS sensors**
 Extension of M&NEMS platform to other kinds of sensors
 MEMS / NEMS for biosensing
 Current sensors based on magnetic components
LETI’s MEMS activities in summary

- **Support to industry** either on **technological steps** (new materials, technology consulting) or **full development cycle** (new device concept demonstrator including design and process of prototypes)

- **Investigating new materials** for improved performance, reliability, lower production cost, and new applications

 Investigating breakthrough devices architectures

- **Keep industrialization in mind** at all times, ensure quick demonstration for design feedback

- **Deliver**
Original approach on energy harvesting

Multi-ferroic Composites coupled to shape-memory/PiezoE Composites

- Magnetization changes with stress
- PZT actuator to obtain a voltage controlled of the uniaxial anisotropy
- New concept for thermal harvesting based on combination of shape memory effect and direct piezoelectric effect ($\Delta T \approx 2 - 20^\circ C$)

Voltage response of the piezo/magnetic composite vs time with natural T variations in a room (open window)

Net uniaxial anisotropy field of the composite vs applied stress