加工Si基板上への非極性GaN結晶成長

1) 名古屋大学工学研究科・赤崎記念研究センター
2) 愛知工業大学工学研究科

1) 本田善央、1) 谷川智之、1) 鈴木希幸、
1) 山口雅史、2) 澤木宣彦
豊田講堂時計台

赤崎研究センター

 auditorium

 Akasaki research center

常圧MOVPE

 減圧MOVPE (2inch)

 MOVPE #3

 MOVPE #4

 HVPE
発表内容

1) 背景と目的
2) 半極性・非極性GaN結晶成長
3) GaNの厚膜化
4) まとめ
GaNデバイスの高品質化に向けて

解決すべき問題点
・ピエゾ電界の低減
・格子不整合系（InGaN・AlGaN基板）
・平坦面の実現
・p型伝導性の制御
・結晶内の貫通転位の低減

極性面
半極性面
無極性面

(0001)面 (11-22)面 (11-20)面

各成長面上InGaNのTRPL評価@2K（ビエゾ電界の抑制）

ピエゾ電界による電子-正孔の空間的分離

Decay time (ps)
Photon Energy (eV)

(0001)
(11-22)
(1-101)

400 380 360nm

(0001)
5ns

(1-101)
5ns

(11-22)
5ns

ピエゾ電界による電子-正孔の空間的分離

(0001)
(11-22)
(1-101)
半極性・無極性GaNの現状

<table>
<thead>
<tr>
<th></th>
<th>基板サイズ</th>
<th>価格</th>
<th>品質</th>
</tr>
</thead>
<tbody>
<tr>
<td>バルクGaNからの切り出し</td>
<td>×</td>
<td>×</td>
<td>◎</td>
</tr>
<tr>
<td>異種基板上へのヘテロ成長</td>
<td>◎</td>
<td>○</td>
<td>△</td>
</tr>
</tbody>
</table>

大面積の作製法が確立されていない

本研究では異種基板上へヘテロ成長により半極性・無極性GaN結晶成長を試みる。

本研究の目的

Si基板上への厚膜GaN基板の作製→自立基板の作製

i) Si基板上への半極性無極性GaN結晶の作製

ii) Si基板上への厚膜GaN作製の問題点を解決
発表内容

1）背景と目的

2）半極性・非極性GaN結晶成長

3）GaNの厚膜化

4）まとめ
半極性GaN on (001)Si

- 加工Si基板上
- GaN選択成長
 ↓
 C軸を傾けて成長
 適切な面のSi基板
 任意の面の非極性GaN
Si基板上へのC軸傾斜GaN作製

成⾧模式図

2) KOHにより(111)Si面を形成
3) SiO₂を片方の斜面に堆積
4) GaN成長

C軸を傾けることが可能

Si基板上への
C軸傾斜GaN成長

半極性平坦面の作製

(1-101)GaN
7°off Si sub.
void

ストライプを結合して
平坦面の作製が可能
2インチSi基板上への半極性GaN成長

Si基板上(1-101)GaNの表面写真

断面SEM像

{1-101}

2インチ-サイズSi基板上へ鏡面の(1-101)GaN結晶の作製に成功
発表内容

1) 背景と目的

2) 半極性・非極性GaN結晶成長

3) GaNの厚膜化

4) まとめ
成長方法

MOVPE GaN

HVPE GaN

MOVPE GaN

Si/AlN(50 nm)/GaN

成長プロセス

成長条件

<table>
<thead>
<tr>
<th>構成長条件</th>
<th>870-1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth Temp (℃)</td>
<td>870-1000</td>
</tr>
<tr>
<td>HCl (cc/min)</td>
<td>70</td>
</tr>
<tr>
<td>NH₃ (cc/min)</td>
<td>500</td>
</tr>
<tr>
<td>V/III ratio</td>
<td>7</td>
</tr>
<tr>
<td>Growth Time (hour)</td>
<td>1-6h</td>
</tr>
</tbody>
</table>
大面積基板への結晶成長の課題

Si基板上GaN厚膜成長の課題

a) メルトバックエッチング
SiとGaの反応により結晶が変質

変質層

メルトバックエッチング
(110)Si sub. (11-20)GaN

500 μm

b) 熱膨張係数差による歪クラック、反りの発生

熱膨張係数差によるクラック

100 μm

3 μm
メルトバックエッチングのEDX分析（定量分析）

EDX spectra for “flower” and GaN

<table>
<thead>
<tr>
<th></th>
<th>Ga</th>
<th>N</th>
<th>Si</th>
<th>Al</th>
</tr>
</thead>
<tbody>
<tr>
<td>メルトバック部分</td>
<td>9.70</td>
<td>54.35</td>
<td>35.51</td>
<td>0.43</td>
</tr>
<tr>
<td>GaN成長</td>
<td>44.01</td>
<td>55.99</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

Unit: atomic %

SiとGaの置換
→ Si基板とGaNが反応し、SiNと液滴Gaに変化

Si基板上GaNの厚膜化（メルトバックエッチング抑制）
メルトバックエッチング対策① ～AlN中間層膜厚保依存性～

HVPE成長におけるメルトバックエッチングのAlN中間層厚さ依存性

AlN膜厚増加
→メルトバックエッチング部分の減少(60%→3.3%)
→AlN膜によりSiとGaの反応を抑制可能である。

HVPE GaN
Growth time 60min
Growth temp. 1050℃
メルトバックエッチング対策② ～成長温度依存性～

After 75 min growth

表面GaN写真 (10 × 14mm)
@1000℃
@960℃
@940℃
@920℃

模式図 (黄色＝GaN 黒色＝melt back部分)

After 315 min growth

表面でメルトバックが観察されていない

Melt back 200μm
(11-22) GaNの低温成長

☆@870℃☆

After 315min(6h) growth

表面SEM像

断面SEM像

表面CL像

転位密度
=1.2 × 10^8/cm^2

半極性 (11-22) GaN自立基板
(Si基板除去後)

・(11-22)GaN: 3D成長
・(0001)GaN: Column成長
厚膜 (11-22) GaNの光学的特性

表面SEM像

断面SEM像

半値幅の拡がり→高い不純物濃度
積層欠陥からの発光
GaN表面写真 by HVPE

Small curvature

Normal to stripe

Parallel to stripe

GaN表面のピークの分裂→クラック、反りの影響

Si基板除去後

・塑性変形
熱膨張係数差による歪の検討

C面成長

Si基板上半極性GaN

高密度のクラック

Si off-substrate

c-axis – 12 %
a-axis + 55 %

熱膨張係数差による歪の検討

断面（側面）

表面

ストライプ方向

断面（上面）

ストライプ

100 μm

(d)
厚膜A面GaN結晶成長

①フォトリソグラフィー、KOHエッティング
②SiO2堆積
③テンプレートGaNストライプ(MOVPE法)
④HVPE再成長
→テンプレートを再成長させることによりGaNストライプを結合、厚膜化

結晶評価方法

・SEM（表面モフォロジーの評価）
・CL（転位伝搬特性の評価）
高温でのHVPE成長結果@1000°C

通常のGaN成長温度(1000°C)
⇒凹凸の激しい結晶
 ・(0001)面を形成 → 三次元成長
⇒メルトバックエッチング
 ・GaとSiが反応

良質な(11-20)GaNは得られない。 ⇒ 成長温度の最適化が必要
HVPEによる低温成長の結果

(11-20)GaN

940 ℃ 870 ℃

メルトバックエッチングなし

940 ℃ 870 ℃

(0001)GaN

870 ℃

グレイン形成

870 ℃

・成長温度を下げることにより変質層のない結晶が得られた
・凹凸の減少 ⇒ 二次元成長を促進 (0001)GaNとは異なる傾向
(11-20) GaNの転位伝搬特性

表面CL像
暗点密度：\(\sim 10^7 \, /\, \text{cm}^2 \)

断面CL像

表面CL測定
・(11-20)厚膜の暗点密度：\(\sim 10^7 \, /\, \text{cm}^2 \)

断面CL測定
・下地テンプレートが高品質であることを反映
・転位がストライプ結合領域で高密度に発生
・表面まで伝搬していない

Si/GaN界面

MOVPE-GaN

HVPE-GaN

(110) Si sub.
XRC 測定 \((120)\omega\)-scan

XRC(120)\(\omega\)スキャン

両方向でいくつものピークを確認

FWHM
828 arcsec

Intensity (a.u.)

\(\omega\) (degree)

ストライプ平行方向

ストライプ垂直方向

表面SEM像

ストライプに垂直、平行方向ともにクラック

250 \(\mu \text{m}\)
a) Si上への半極性・無極性GaN成長
 Si基板上へ(1-101), (11-22), (11-20)面の作製に成功
 2inchサイズSi基板へ鏡面GaN基板の作製に成功

b) HVPE法を用いて(11-22)及び(11-20)GaNの厚膜化
 成長温度依存性
 ・高温GaN成長 (1000℃)
 ⇒メルトバックエッチングの発生、(11-20)面で凹凸の激しい結晶
 ・低温成長 (870℃)
 ⇒二次元成長的な平坦かつメルトバックエッチングない良質な結晶
 300μm厚自立半極性GaNの作成に成功
 転位伝搬特性の評価
 結晶の暗点密度：~10^7/cm^2
 ⇒テンプレートGaNの高品質を反映